Busch’s Theorem for Mappings
نویسنده
چکیده
For rotation-invariant Hamiltonian systems, canonical angular momentum is conserved. In beam optics, this statement is known as Busch’s theorem. This theorem can be generalized to symplectic mappings; two generalizations are presented in this paper. The first one states that a group of rotation-invariant mappings is identical to a group of the angular-momentum preserving mappings, assuming both of them symplectic and linear. The second generalization of Busch’s theorem claims that for any laminar beam which rotation symmetry happened to be preserved, an absolute value of the angular momentum of any particle from this beam is preserved as well; the linear symplectic mapping does not have to be rotation-invariant here.
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
A COMMON FIXED POINT THEOREM FOR SIX WEAKLY COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES
In this paper, we give some new definitions of M-fuzzy metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete M-fuzzy metric spaces.
متن کاملCommon fixed point theorem for nonexpansive type single valued mappings
The aim of this paper is to prove a common fixed point theorem for nonexpansive type single valued mappings which include both continuous and discontinuous mappings by relaxing the condition of continuity by weak reciprocally continuous mapping. Our result is generalize and extends the corresponding result of Jhade et al. [P.K. Jhade, A.S. Saluja and R. Kushwah, Coincidence and fixed points of ...
متن کاملThe starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings
The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.
متن کامل